The concentration of people in densely populated urban areas, especially in developing countries like India and China, calls for the use of sophisticated monitoring systems, like remote sensing and Geographical Information Systems (GIS). Time series of land use/cover changes can easily be generated using sequential satellite images, which are required for the prediction of urban growth, verification of growth model outputs, estimation of impervious area, parameterization of various hydrological models, water resources planning and management and environmental studies. In the present work, urban growth of Ajmer city (India) in the last 29 years has been studied at mid‐scale level (5–25 m). Remote sensing and GIS have been used to extract the information related to urban growth, impervious area and its spatial and temporal variation. Statistical classification approaches have been used to derive the land use information from satellite images of eight years (1977–2005). The Shannon's entropy and landscape metrics (patchiness and map density) are computed in order to quantify the urban form (impervious area) in terms of spatial phenomena. Further, multivariate statistical techniques have been used to establish the relationship between the urban growth and its causative factors. Results reveal that land development (200%) in Ajmer is more than three times the population growth (59%). Shannon's entropy and landscape metrics has revealed the spatial distribution of the sprawl.